

Annette Bruhn, Aarhus University &

Susan Løvstad Holdt- Associate Professor DTU Food

THE FUTURE- A perspective from Denmark and Europe

Agenda

- Seaweed as the goal (SDG)
- Number of companies in Europe
- Harvested or cultivated
- Species
- Methods of harvest
- Volumes
- Uses
- Constraints
- Current status and FUTURE

Distribution and number of companies

- Seaweed companies are located along the coasts
- Main actors:
 - -Ireland, Spain, France, Norge

DTU

Aquaculture vs harvesting seaweed

- Still wild harvest companies are the majority
- Mainly manual work
 - -Future R&D
- Aquaculture mainly sea based

Araújo et al 2021

DTU

Aquaculture and harvesting company distribution

Volumes of seaweed

- Harvested total approx. 300,000 tonnes
- Aquaculture total approx. 500 tonnes (0.2% of harvested)
- Less species domesticated for aquaculture
- 10 tonnes per company for aquaculture

Aquaculture	Companies	tonnes (ww)
Others (Chondrus, Codium, Gracilaria,		
Porphyra sp., Undaria sp. etc)	26	n.a.
Saccharina latissima	26	376
Alaria esculenta	16	103
Ulva sp	10	50
Laminaria sp	8	n.a.
Palmaria palmata	6	n.a.
TOTAL		529
tonnes per company		10

Harvested	Companies	tonnes (ww)
Others (Alaria esculenta, Asparagopsis sp,		
Codiumsp, Gelidium sp., Gigartina,		
Lithothamnium, Mastorcarpus, Osmundia,		
Vertebrata)	80	n.a.
Ulva sp	38	217
Fucus sp	37	n.a.
Laminaria sp	37	209.772
Palmaria palmata	35	455
Porphyra sp	25	n.a.
Ascophyllum nodosum	24	82.476
Chondrus crispus	23	186
Himanthalia elongata	29	10
Saccharina latissima	25	n.a.
Undaria pinnatifida	22	294
Furcellaria lumbricalis (harvest and collected)	3	1.450
TOTAL		294.860

Species of seaweed (FAO, 2020; Araújo et al 2021; free after)

Seaweed utilization

• Market share: Human food > cosmetic > food supplements > feed/fertilizer.....

FIGURE 9 | Share of commercial biomass applications by macroalgae and microalgae production company. These results are based on the share in the number of companies (not by volume).

Past and future use of seaweed

SEAWATER

The aquatic ressource. Indergaard 1983

Past and future use of seaweed

Companies cultivating microalgae and seaweed

- Linear increase in total companies over the years (approx 200 in 2020)
- New companies activity in the last decade increasing with 150%
- Decrease in new companies since 2016

Companies cultivating microalgae and seaweed

- Linear increase in total companies over the years (approx 200 in 2020)
- New companies activity in the last decade increasing with 150%
- Decrease in new companies since 2016

Some constraints for sector expansion:

- small market size for algae commodities in Europe
- variability in the annual biomass supply- supply security
- current state of technological development in the production and processing of biomass
- complexity and/or inexistence of some EU and national regulations in aspects:
 - cultivation licenses
 - limit values for harmful metal
 - organic certification

Araújo et al 2021

Conclusions

- Few species domesticated for cultivation
 - -May also be less species than harvested in future
 - -Aquaculture= small volumes
 - -Larger scales needed in future
- Manually labour- mainly time as costs in LCA –Mechanisation needed
- More focus on multi-use of our resourses- cascading, multi-extraction
- Increasing total companies---- aquaculture and harvest of natural populations, but less new-starters the recent years
- Constraints must we solved in parallel
 - -Partnerships/collaboration- business, academia, authorities

Look out for this reference

Thank you

• suho@food.dtu.dk

Emerging sectors of the Blue Bioeconomy in Europe: status of the algae production industry

Araújo R*1, Vázquez Calderón F¹, Sánchez López J¹, Azevedo I², Bruhn A³, Fluch S⁴, García-Tasende M⁵, Ghaderiardakani F⁶, Ilmjärv T^{7, 8}, Laurans M⁹, MacMonagail M¹⁰, Mangini S¹¹, Peteiro C¹², Rebours C¹³, Stefánsson T¹⁴, Ullmann J¹⁵

¹ European Commission, Joint Research Centre (JRC), TP 270, Via E. Fermi, I-21020 Ispra (VA), Italy
² CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal

³ Aarhus University, Department of Bioscience & Centre for Circular Bioeconomy. Vejlsøvej 25, 8600 Silkeborg, Denmark

⁴Weiden am See, Austria

⁵ Centro de Investigacións Mariñas (CIMA) – Corón. Consellería do Mar - Xunta de Galicia. Pedras de Corón, s/n -Apdo.13 - 36620 Vilanova de Arousa, Spain

⁶ Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University Jena, Lessingstr.8, D-07743 Jena, Germany

⁷Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia. ⁸Vetik OÜ, 93859 Saare County, Estonia

⁹ Ifremer, Centre de Brest, Département STH, Plouzané, France

¹⁰Arramara Teoranta, Oyster Bay, Kilkieran, Co. Galway, Ireland

¹¹ Archimede Ricerche srl, Corso Italia 220, I-18033 Camporosso (IM), Italy

¹²Spanish Institute of Oceanography (IEO), Oceanographic Center of Santander, Marine Culture Unit "El Bocal", Seaweeds Center, Corbanera s'n. 39012 Monte, Santander, Spain

¹³Møreforsking AS, PO Box 5075, 6021 Ålesund, Norway
 ¹⁴Algalif Iceland ehf, Bogatrod 10, 262 Reykjanesbaer, Iceland
 ¹⁵Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, 38486 Klötze, Germany

Journal

Environmental Innovation and Societal Transitions

ansitions Corresponding author. European Commission - Joint Research Centre (JRC); TP 270, Via E.