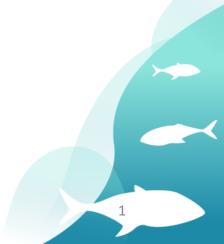
MONITORFSH PIONEERING FISH FARM MANAGEMENT



FISH FARMER'S PROBLEM

Fish farming companies on average lose 40% of their revenue because the fish are not kept in optimum growing conditions. Every 7th batch is lost 100% catastrophically.

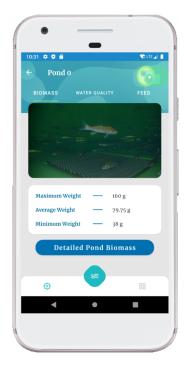
High stress on fish are mainly caused due to:

- Daily manual handling of fish to estimate fish weight
 - Over/under feeding of fish
 - Cannibalistic nature of fish

Weighing 50-1000 fish per tank everyday...

2 .

MONITORF


3

MONITORF

OUR SOLUTION: AnFish©

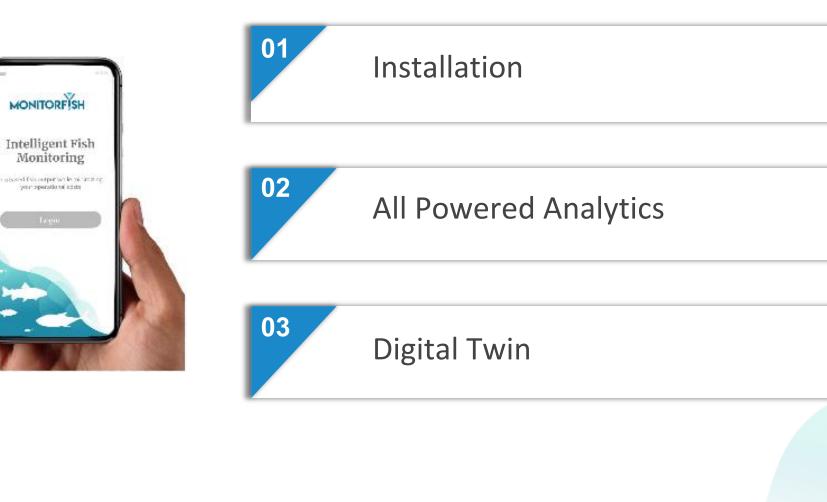
AI-based fish health diagnoses

BIOMASS ESTIMATOR

Save time and efforts to measure fish weight. Get live fish weight measurement within seconds

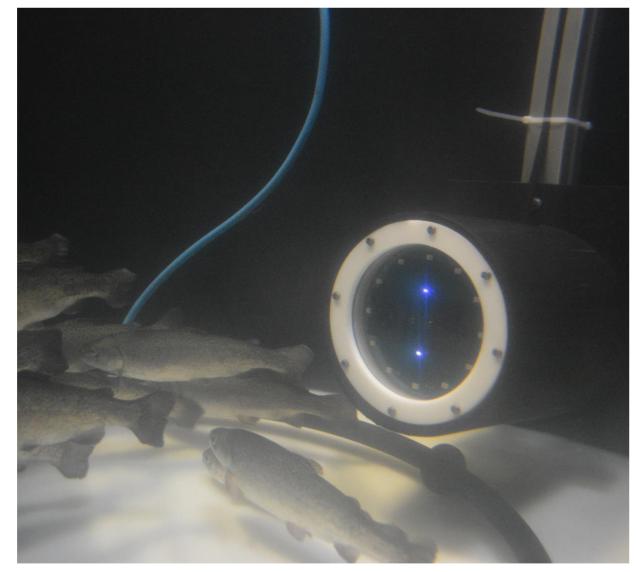
FISH SORTING

Get alerted to sort your fish based on the weight to avoid cannibalism


FISH GROWTH Understand and take control of the fish production to achieve your targetoutput

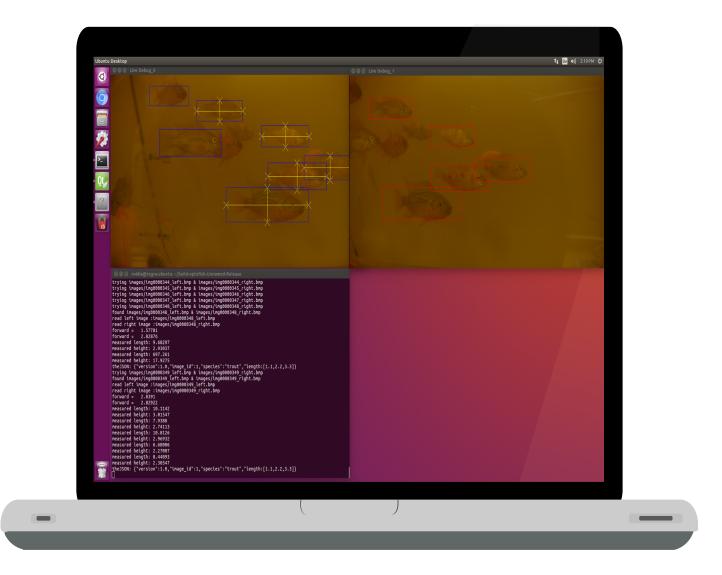
FISH HUNGER Feed effectively at the right time and in precise quantity to save on feeding costs

Key Steps


MonitorFish GmbH

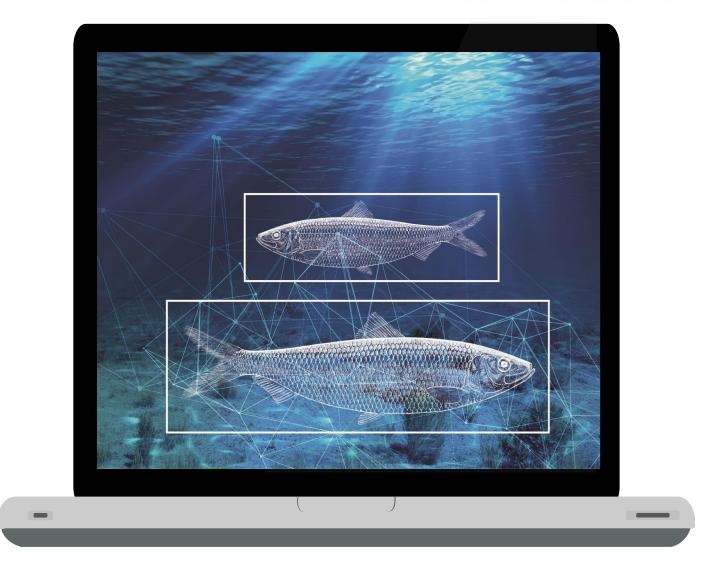
Installation

Our proprietary software AnFish© is enabled by a stereo camera system installed within the fish tank along with water quality sensors measuring pH, temperature and dissolved oxygen.



Al Powered Analytics

Our unique data architecture aided by advanced underwater image recognition technology allows automatic simulation of key parameters like fish weight, feeding effectiveness, early signs of stress and water quality.



Digital Twin

We create a digital manual for the fish farm that creates recommended actions on feeding, increasing output, expanding the fish farm, predicting upcoming problems, and predicting overall cost of the fish farm.

"We can use the images and software to monitor the condition of the scales and the development of the fish - and intervene if something is wrong. That means fewer losses. And the quality of the fish is better when it is less stressed."

Fish welfare detection parameters

AI-based fish health diagnoses

Measured values:

- Optical parameters:
 - Fish size and weight
 - Movement and patterns of movement
 - Skin properties, colour, infections
 - Behavioural changes e.g. due to stress

Water quality parameters:

- Temperature, pH value, oxygen, ammonium concentration
- Nitrite concentration, turbidity, water level
- Carbon dioxide, redox potential

Validation objectives

Fish welfare parameters

AI-based fish health diagnoses

Validation method

Biometric feature: Size, weight, (number) results in population density

Textures and anomalies: skin characteristics (fins, scales), eyes, gills

Behavioral changes: Stress-related (physical, chemical, human-related influences; diseases), species-specific stress factors

Movements/deformation: Global movement (individual movement / swarming movement), local movements (gills, fins) Biometric feature: Size, weight, (number) results in population density manual measuring, weighing, counting

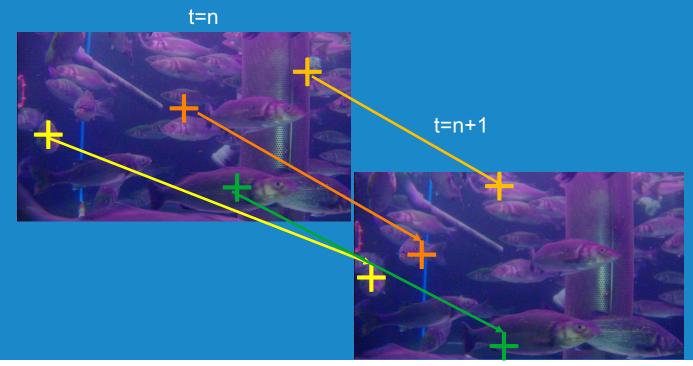
You can simply impress your audience and add a unique zing and appeal to your Presentations.

Tissue/blood sample to determine the cortisol/sugar level, eating behaviour Evaluation by experts (e.g. stocking density)

Tracking and plotting the trajectories, counting the gill movements, escape, hectic; observation of fin movement

Fish activity detection

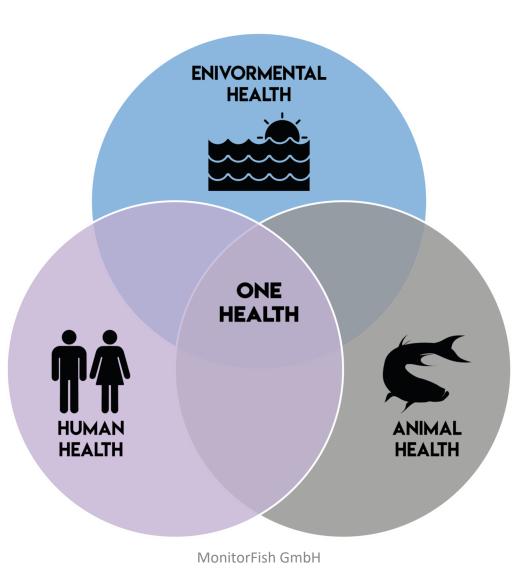
movement activity = m / day / fish


Task:

- Tracking of all objects (fish)
- Analysis of the image sequence
- Accumulation of relative movement

Technology:

- Recurrent Neural Networks
 Combination of RNN and CNN
- feed forward neuron
- recurrent neurons


Spatial differences of all animals of an image capture out of a sequence of two images

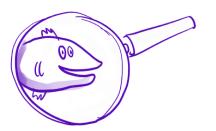
Al-based fish health diagnoses

<u>Bio</u>-indicators for the Evaluation of the Welfare, Health and Product Quality of <u>Fi</u>sh in different <u>A</u>quaculture Systems

https://www.bams.uni-kiel.de/de/unsere-konsortien/biofia-innovativebioindikatoren-fuer-die-evaluierung-der-haltung-gesundheit-undproduktqualitaet-von-fischen-in-differenten-aquakultursystemen

Project partners

Unternehmen		
MONITORF	MonitorFish - Hochschule für Technik und Wirtschaft Berlin	Dominik Ewald
BAADER ////	Nordischer Maschinenbau Rudolf Baader GmbH & Co. KG - Lübeck	Bodo Hensen
🔅 microganic®	Microganic GmbH, Melle	Svenja Starke
Gesellschaft für Marine Aquakultur	Gesellschaft für Marine Aquakultur mbH, Büsum	Michael Schlachter
Forschungspartner		
Fraunhofer	Fraunhofer-Einrichtung für Marine Biotechnologie (EMB), Lübeck	Sebastian Rakers
LEIBNIZ-INSTITUT FÜR NUTZTIERBIOLOGIE	Leibniz-Institut für Nutztierbiologie (FBN), Dummerstorf	Tom Goldammer
MRI 💝	Max Rubner-Institut (MRI) - BFI Ernährung-Lebensmittel, Kiel	Joachim Molkentin
Universität Hamburg der Forschung i der Lehre i der Bildung	Universität Hamburg	Eva Spieck
C A U Christian-Albrechts-Universität zu Kiel	Christian-Albrechts-Universität zu Kiel	Carsten Schulz
Universität Rostock Traditio et Innovatio	Universität Rostock	Patrick Unger

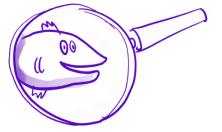

*Bio***FiA**

Location of the BioFiA network partners

Development of molecular and cellular **bio-indicators** and use and evaluation of AIbased **monitoring mechanisms** to assess stress, animal welfare and health in aquaculture facilities and optimize fish production at key stages of animal production

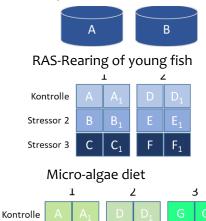
Based on this contributions are made to:

Stress reduction in machine processing - stress-free harvesting and slaughtering of salmonids to improve fillet quality

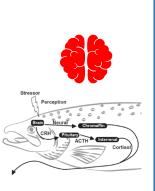

Understanding the influence of different microbial communities on nitrification efficiency (in RAS) and on fish

Identification of positive effects of micro-algae feeding on animal health and evaluation of micro-algae as feed additive and as complete feed for fish

Implementation strategies - **recommended actions** for companies



Work package 1: Scientific data acquisition and experimental research


M1.2: Controlled environmental impact of fish farming

Fish production on-farm

Dosis 1

Dosis 2

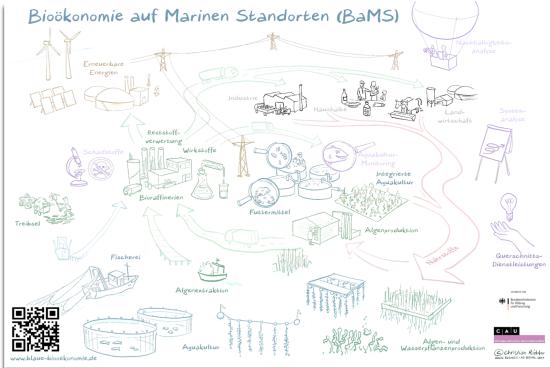
- Mobile, 24/7, video
- complete physical chemistry,
- Adaptation, validation and further development of the software


M1.6: Parasitological studies of experimental fish

M1.5: Non-invasive cloud-based real-time fish

monitoring

- Parasite detection
- Evaluation of fish farming



MONITORF BAADER //// **micro**ganic® Gesellschaft für Marine Aquakultur 🗾 Fraunhofer EMB LEIBNIZ-INSTITUT FÜR NUTZTIERBIOLOGIE MRI Max Rubner-Institut Ш H Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG U C **A** | Christian-Albrechts-Universität zu Kiel Universität Rostock Traditio et Innovatio

Find us as new partners for your ideas!

https://www.bams.uni-kiel.de/de

M.Sc. Manufacturing engineering Business administration

Experience

First employee of a water filtration tech startup in Germany. Has led the startup to enter and scale up in the market CSO & CO-FOUNDER Dominik Ewald

M.Sc. Biotechnology

Experience Strong network with agricultural association and aquaculture farmers in Europe

SENIOR FISH EXPERT Ralf Fisch

Dipl. in Biology and Bionics

Experience

20+ years experience designing fish farms and improving fish farming output in Europe

CTO Jan Apel

B.Sc. Computer science

Experience 10+ years experience in developing software architecture

SUMMARY

MonitorFish at glance

ewald@monitorfish.com

www.monitorfish.com

EVOUIK Leading Beyond Chemistry

Fraunhofer IGD

Traditio et Innovatio

Universität Rostock

HOCHSCHULE OSNABRÜCK UNIVERSITY OF APPLIED SCIENCES

ColossalSpark

LEIBNIZ-INSTITUT FÜR NUTZTIERBIOLOGIE

Fraunhofer EMB

RotogalgmbH

Coppenrath Stiftung

CIST

Gesellschaft für Marine Aquakultur

Institut für Binnenfischerei e.V. Potsdam-Sacrow

e für PeutschlandFish GmbH aus der Wissenschaft

2

23