



European Aquaculture Society annual conference: Berlin 8<sup>th</sup> - 10<sup>th</sup> October 2019 <u>EU EATIP Day: Low impact – High output: Promoting food security and new value chains in aquaculture</u> SESSION 3 – Efficient management systems to optimize sustainability and competitiveness.

# GAIN: ecological intensification and optimization

R. Pastres, Ca Foscari University of Venice

pastres@unive.it







# GAIN: challenges

GAIN **overarching goal : promote the ecological intensification** of aquaculture in the EU and EEA.

Our vision goes beyond sustainable intensification, including:



increase in production volumes



higher quality of aquatic products



increase in profitability

decrease environmental load of aquaculture





## GAIN: main achievements







### Technological gaps : precision aquaculture requires real time non invasive monitoring of fish/shellfish size distribution/biomass : Do we have "silver bullet" solution(s)?

**Not yet**, but very interesting approaches are emerging. In GAIN we are testing commercial and close-to-market sensors on salmon and trout farms:

#### **Scotland and Canada**

**CageEye**: Beam sonar system with two transducers, providing a 2D view of **fish relative density** within a cage Norway

AquacultureBiomassMonitor(ABM)providesestimatesofaverageweightandbiomassvertical distribution.





#### Italy

Biomass Daily, previously applied to salmon, is being tested on rainbow trout







## What can one do with real time data? Oxygen supply optimization



Dissolved

Oxygen

dynamic

model



Fish Respiration and O2 Supply



#### **DO Forecast - Modulated O2 Supply**



Oxygen actually supplied in **two weeks** : 773 m<sup>3</sup> Simulated dynamic oxygen supply : 587 m<sup>3</sup> Potential saving = 93 m<sup>3/</sup>week = 122 Kg/week  $0.125 \notin Kg \ge 122 = 15 \notin / week$ Assuming 26 weeks/year of O<sub>2</sub> supply, the farmer could save about 390 Euro per basin per year. There are 7 basins in the farm, which means a potential saving of about 2700 Euros/year.

#### pastres@unive.it





# GAIN: impact

