

Transfer of innovative freshwater aquaculture in developing countries

Jesper Heldbo AquaCircle

Danish aquaculture took its beginning in1894

Reduced catches The first pilot broodstock based on wild catch and simple "hatcheries" in drainage pipes in ponds

- ✓ Farms closing
- Innovation of technology reducing the water consumtion and discharge
- Same output over short time

Development of Danish Aquaculture AquaCırcle

Traditional flow-through farm with earthen ponds

A modern Danish 'Model' trout farm

Highly advanced indoor RAS facilities

Degree of Re-circulation Increasing use of technologies

Aeration & degassing

Faecal traps

Moving bead bio-filter

Converting traditional farms

Knowledge transfer

- Fast-growing freshwater fish like pangasius and tilapia represent a huge opportunity to grow more protein at a low environmental cost
- and feed a global population that is expected to reach 10 billion by 2050

Technology transfer to Vietnam Pangasius in raceway system

Finished construction

Ready to receive fish

Up and running

Results

- ✓ The production reached nearly 18 tons after only 6 months of culture, equalled to 30 kg/m3.
- ✓ The biomass of pangasius in intensive ponds equipped with aerators was 17.8 kg/m³ – app. 60% lower.
- ✓ Mortality rate was app. 3% compared to app 18 % in ponds.
- ✓ Specific growth rate (SGR) was 1.7 %/day compared to 1.4 % in ponds.
- ✓ FCR was reduced from 1.7 to 1.4.
- \checkmark No drugs or chemicals were used.

Results

At a public owned shrimp hatchery, whiteleg shrimp (Litopenaeus vannamei), in Ben Tre province, we introduced a raceway system for growing PL from PL 15 to stocking size. The system worked well and improved the survival.

Intake water of poor quality

Sedimentation, mechanical filtering, ozonation and UV treatments was introduced.

Technology Transfer

Danish Recirculation Technology - the future of Aquaculture now